
Sparse Non-negative Matrix Factorization
with Generalized Kullback-Leibler Divergence

Jingwei Chen1, Yong Feng1, Yang Liu2(B), Bing Tang3, and Wenyuan Wu1

1 Chongqing Key Laboratory of Automated Reasoning and Cognition,
Chongqing Institute of Green and Intelligent Technology, CAS,

Chongqing 400714, China
{chenjingwei,yongfeng,wuwenyuan}@cigit.ac.cn

2 College of Information Science and Engineering, Chongqing Jiaotong University,
Chongqing 400074, China

ly1246@qq.com
3 School of Computer Science and Engineering,

Hunan University of Science and Technology, Xiangtan 411201, China
btang@hnust.edu.cn

Abstract. Non-negative Matrix Factorization (NMF), especially with
sparseness constraints, plays a critically important role in data engi-
neering and machine learning. Hoyer (2004) presented an algorithm to
compute NMF with exact sparseness constraints. The exact sparseness
constraints depends on a projection operator. In the present work, we
first give a very simple counterexample, for which the projection operator
of the Hoyer (2004) algorithm fails. After analysing the reason geomet-
rically, we fix this bug by adding some random terms and show that the
fixed one works correctly. Based on the fixed projection operator, we pro-
pose another sparse NMF algorithm aiming at optimizing the generalized
Kullback-Leibler divergence, hence named SNMF-GKLD. Experimental
results show that SNMF-GKLD not only has similar effects with Hoyer
(2004) on the same data sets, but is also efficient.
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1 Introduction

Since Lee and Seung’s Nature paper [11], Non-negative Matrix Factorization
(NMF) has been extensively studied and has a great deal of applications in
science and engineering. In contrast to Principal Component Analysis [9] and
Independent Component Analysis [8], NMF is strictly required that the entries of
both resulting matrices are non-negative. Such a constraint is very meaningful
in many applications, in which the data representation is purely additive, for
instance, the parts-based representation of face image data from CBCL database.

Given a non-negative matrix V ∈ R
m×n and a positive integer r < min{m,n},

the goal of NMF is to find non-negative matrices W ∈ R
m×r and H ∈ R

r×n
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minimizing the function f(W,H) = ‖V − WH‖2F , or the function d(W,H) =∑
i,j (Vi,j log (Vi,j/(WH)i,j) − Vi,j + (WH)i,j), where ‖ · ‖F is the Frobenius

norm of a matrix. We call f(W,H) the Square of Euclidean Distance (SED)
and d(W,H) the Generalized Kullback-Leibler Divergence (GKLD). The prod-
uct WH is called an NMF for V . Note that, in most cases, WH is not equal
to V . The parameter r is problem-dependent, and is set by users. Usually, r is
chosen to satisfy r � min{m,n} such that WH can be thought of as a com-
pressed form of the original data. Lee and Seung [12] presented two NMF algo-
rithms based on multiplicative formulae whose objective functions are SED and
GKLD, respectively. The two NMF algorithms can be seen as the basic ones, on
which many other NMF algorithms are based. In 2004, Hoyer [6] introduced the
sparsenessdefinition for anynon-zeron-dimensional vectorx, i.e., Sparseness(x) =
(
√

n − ‖x‖1/‖x‖2) /(
√

n − 1), and proposed an algorithm to perform NMF with
sparseness constraints (NMFSC). NMFSC adopts Lee and Seung’s multiplicative
formulae to optimize SED and uses a non-linear projection operator to control the
sparseness of W and H.

In the present paper, we first revisit the Hoyer’s projection operator [6, p.
1463]. In fact, for a kind of examples, the projection operation may fail. Geomet-
rically, the failure case corresponds to that a direction vector of the projection
operator is 0, so that the operator can not decide how to process further. We
modify the operator a little to fix this bug and prove its correctness in Sect. 2.
In Sect. 3, we propose a sparse NMF algorithm based on the fixed Hoyer’s pro-
jection operator, named SNMF-GKLD, whose objective function is GKLD. We
show experimentally that SNMF-GKLD is efficient and has similar effects with
NMFSC in Sect. 4.

1.1 Related Work

Here, we only focus on algorithms to compute sparse NMF. We refer to [1,4,7]
and references therein for general NMF discussion.

Li et al. proposed a local NMF algorithm [13], in which the key idea is to
limit the columns of W orthogonal to each other, which makes W sparse, but
H may be far from sparse. Hoyer [5] combined sparse coding and NMF. Liu
et al. [15] gave a similar algorithm, but with SED replaced by GKLD. Liu and
Zheng [14] presented an �p-NMF algorithms, which uses GKLD as its objective
function and limits ‖Wi‖p = 1. For larger p, �p-NMF gives sparser represen-
tations. Hoyer [6] adopted SED as the objective function to propose an NMF
algorithm (NMFSC) with exact sparseness constraints. The exact constrain on
sparseness depends on a nonlinear projection that may fail for some cases. We
fix the little bug in this paper. Stadlthanner et al. extended NMFSC [17] with
exact sparseness constraints on Wi and Hi and disscussed the uniqueness of
Hoyer’s projection operator. Cichocki et al. [3] presented an NMF algorithm
which uses ‖V − WH‖2F + αJ1(W ) + βJ2(H) as its objective function. Their
algorithms are modified from the basic ones and easy to implement, however,
they may diverge. Pascual-Montano et al. [16] proposed the nsNMF algorithm
and showed that it balances the sparseness and the capability of representing the
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original data. Kim and Park [10] gave SNMF/L and SNMF/R. Tong et al. [18]
proposed an NMF algorithm which combines SVD initialization technique from
[2] and the extended NMFSC from [17]. Although a large number of sparse NMF
algorithms have been proposed, there seems to be no sparse NMF algorithm in
literature combining Hoyer’s projection operator and the multiplicative formula
for GKLD. In this paper, we explore this combination.

2 The Hoyer’s Projection Operator Revisited

As indicated in [6] by the author, Hoyer’s NMFSC algorithm is essentially the
multiplication iteration for the gradient descent algorithm with a projection
operator which enforces the desired degree of sparseness. Actually, the projection
operator solves the following problem: given any vector x, find the closest (in
the euclidean sense) non-negative vector s with a given �1-norm L1 and a given
�2-norm L2. This operator is naturally used to control the sparseness exactly.
We recall this operator as in Algorithm 1.

Algorithm 1. (The projection operator in [6]).
Input: A vector x ∈ R

n, norm conditions L1 and L2.
Output: A closest non-negative s to x with ‖s‖i = Li, i = 1, 2.
1: Set s := x + (L1 − ‖x‖1)/ne with e = (1, 1, · · · , 1)T ∈ R

n. Set m := (L1/n)e.
2: Set s := m + α(s − m) with α > 0 such that ‖s‖2 = L2.
3: if there exists j with sj < 0 then
4: Set sj := 0. Remove j-th coordinate of x.
5: Decrease dimension n := n − 1.
6: goto 1.
7: end if

The projection algorithm starts from orthogonally projecting the given vector
x onto the hyperplane

∑n
i=1 si = L1. Next, within this hyperplane, it projects

to the closest point on the joint constraint hypersphere. Namely, computing a
point s satisfying

∑n
i=1 si = L1 and ‖s‖2 = L2 simultaneously. This is done

by, step 2, moving radially outward from the center of the sphere (the center
is given by the point where all components have equal values). If the result is
completely non-negative, we have arrived at our destination. If not, then we
have ‖s‖1 > L1, and hence those components that attained negative values
must be fixed to zero (step 4) and the new point must be projected onto the
hyperplane

∑n
i=1 si = L1 again (step 5 and 6), until the algorithm converges.

The above iteration terminates after at most n iterations since at each iteration,
the algorithm either terminates, or at least one component is set to zero and
removed.

2.1 A Counterexample

It is ingenious to design the projection algorithm. Further, Stadlthanner et al.
[17] proved the uniqueness of the projection operator. However, there exists a
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case, for which the projection algorithm may fail. The case happens when s = m
before step 2, i.e., ∀i /∈ Z, all components si’s are equal. Geometrically, in this
case, we can not moving from m, the center of the joint constraint hypersphere,
to the closest point. Instead, the algorithm will return m, however, ‖m‖2 is not
be L2 in general. For this case, the projection algorithm fails. Here is a simple
counterexample for which Hoyer’s Matlab implementation does not work:

>> s =[-1,-1]’
>> projfunc(s, 3, 5.598076212, 1)

In the code, the parameter 3 is the �1-norm and 5.598076212 is the square of the
�2-norm. For this example, projfunc falls into an endless loop.

Note that this kind of examples does not contradict with the uniqueness in
[17, Theorem 1], because it has been already indicated that the exception set for
uniqueness has Lebesgue measure 0. In fact, the set of counterexamples pointed
out here has exact Lebesgue measure 0.

2.2 Bug Fixing

Here is a modification to fix the above bug. The basic idea is the following: if s = m
before step 3, we re-choose s such that

∑n
i=1 si = L1 and that s − m �= 0. In

particular, one can insert “If s = m, then randomly choose si such that
∑

i si =
L1. Repeat this step until s �= m” to the location between step 1 and 2.

Proposition 1. Algorithm 1 with the above modification correctly computes a
closest non-negative s to x with ‖s‖i = Li, i = 1, 2.

Proof. As indicated in Sect. 2.1, s = m means that all components si’s are
equal. Then the orthogonal projection of s onto

∑n
i=1 si = L1 is exactly m, the

center of the joint constraint hypersphere. This means that the distances between
m(= s) and each intersection point of the sum and the �2-norm constraints are
equal, so do the distances between x and each intersection point. Thus, in the
constraint hypersphere we can move from m along any direction (i.e., either
α ≥ 0 or α < 0) to the closest point. The correctness follows.

3 Sparse NMF with GKLD

We now present a sparse NMF algorithm with the generated Kullback-Leibler
divergence d(W,H) as its objective function. We call the algorithm SNMF-
GKLD, which can be seen as a result of combing the corresponding multiplicative
iterations from [12] and the modified Hoyer’s projection operator in Sect. 2.

SNMF-GKLD has a similar structure with Hoyer’s NMFSC algorithm [6],
however, besides the modified projection operator, it is different from NMFSC
in at least the following two aspects. Firstly, we use GKLD as our objective
function, while NMFSC uses SED. The two objective functions are well-known
as basic objective functions for NMF. It is natural and necessary to investigate
the performance of GKLD plus Hoyer’s projection operator. Secondly, NMFSC
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uses the additive version of gradient descent algorithm with automatically chosen
stepsizes to make the objective function decrease. SNMF-GKLD gives up this
step, since according to a large number of experimental observations, it seems
that the objective function d(W,H) always decreases after each iteration, if only
one sparseness of W and H is constrained. Unfortunately, this observation does
not hold when both sparseness of W and H are constrained. As a consequence,
SNMF-GKLD only allows to constrain the sparseness of one factor, i.e., either
W or H. An advantage is that SNMF-GKLD has a more practical efficiency than
NMFSC for large size data, as the experiments will show in the next section.

Algorithm 2. (SNMF-GKLD).
Input: A non-negative matrix V of size m × n; r ∈ Z; 0 ≤ γW ≤ 1 or 0 ≤ γH ≤ 1.
Output: A matrix W of size m × r and a matrix H of size r × n minimizing d(W, H).
1: Initialize W and H as random non-negative matrices.
2: If sparseness constraints on W apply, then projection each column W to be non-

negative, have unchanged �2-norm, but �1-norm set to achieve desired sparseness.
3: If sparseness constraints on H apply, then projection each row H to be non-

negative, have unit �2-norm and �1-norm set to achieve desired sparseness.
4: while converge or stop do

5: Wi,a := Wi,a

∑
μ Ha,μVi,μ/(WH)i,μ

∑
ν Ha,ν

.

6: if sparseness constraints on W apply then
7: Project each column W to be non-negative, having unchanged �2-norm, but

set �1-norm to achieve desired sparseness.
8: end if
9: Ha,µ := Ha,µ

∑
i Wi,aVi,μ/(WH)i,μ∑

k Wk,a
.

10: if sparseness constraints on H apply then
11: Project each row H to be non-negative, having unit �2-norm and set �1-norm

to achieve desired sparseness.
12: end if
13: end while

4 Experiments

We now report some experimental results, which show that SNMF-GKLD has
almost the same capability as NMFSC, but is more practical for “big data”. The
data sets we use are CBCL, ORL and ON/OFF filtered natural image database
that is included in Hoyer’s NMF software package. These data sets were also
used in [6] to test NMFSC. We run all experiments in Matlab R© R2015b on a
Win 10 PC with Intel R© CoreTM i5-4300U CPU and 8 GB memory. In addition,
we fix the number of iterations at 300 for all experiments.

For the CBCL data, some resulting bases are shown in Fig. 1, in which the
parameters are taken from [6, Fig. 3]. i.e., for (a) γW = 0.8, for (b) γH = 0.8 and
for (c), γW = 0.2. As NMFSC, setting a high sparseness value for W results in a
local representation, and global features can be learned by setting a low sparse-
ness value for W or a high sparseness for H. Figure 2 shows bases learned by
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Fig. 1. Features learned from the CBCL database by SNMF-GKLD

Fig. 2. Features learned from the ORL database by SNMF-GKLD

SNMF-GKLD for various sparseness settings, where sparseness levels were set to
(a) γW = 0.4, (b) γW = 0.5 and (c) γW = 0.6. The representation switches from
global to local with sparseness increasing. Figure 3 shows that SNMF-GKLD
is also able to learn oriented features. According to these experiments, SNMF-
GKLD has similar effects as NMFSC (comparing with [6, Figs. 3, 4, 5]).

According to our experiments, for CBCL and ORL data, SNMF-GKLD has
a similar efficiency with NMFSC, however, for ON/OFF-filtered natural images,
SNMF-GKLD costs only about a half time of NMFSC. More specifically, for
learning the features in Fig. 3, SNMF-GKLD uses 87.5 s while NMFSC uses
155.9 s. For another example, SNMF-GKLD uses 85.9 s when the sparseness of
H was fixed at 0.8, while NMFSC uses 155 s. There may be two reasons for
this phenomenon. Firstly, ON/OFF-filtered natural images have larger size than
that of CBCL and ORL data. Secondly, NMFSC has to re-choose the stepsize to
make the objective function decrease, but SNMF-GKLD omits this step thanks
to the observation obtained by Fig. 4.

Figure 4 shows the evolution of the objective function d(W,H) for all exper-
iments above. It shows that the objective function decreases after each iteration
in SNMF-GKLD. This can be seen as an experimental evidence for convergence.
However, we lack a mathematical convergence proof for the moment.
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Fig. 3. Basis vectors learned from ON/OFF-filtered images by SNMF-GKLD

Fig. 4. The evolution of d(W, H) for all experiments in Figs. 1, 2 and 3

5 Conclusion and Discussion

In the present paper, we analyse and fix a bug of the key part of Hoyer’s NMFSC
algorithm, the projection operator, and prove the fixed version is correct. Combin-
ing the fixed projector operation with the generalized Kullback-Leibler divergence
objective function, we propose a sparse NMF algorithm, SNMF-GKLD. Experi-
ments shows that SNMF-GKLD has almost the same capability as NMFSC and
that it is efficient.

SNMF-GKLD can control the sparseness exactly, but, unfortunately, the
sparseness can be constrained only on one factor, i.e., W or H. How to extend
SNMF-GKLD such that it can be used to control the sparseness of W and H
simultaneously is an open problem. In addition, it would be very interesting to
explore the theoretical convergence of SNMF-GKLD.
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